分布式光纖應變和溫度傳感器
BOTDR傳感系統(tǒng)有以下幾個方面的優(yōu)點:
1)它能同時對溫度和應力進行探測;
2)測量靈敏度高,溫度為0.2oC,應力為4με;3
3)探測作用距離遠,能達到100公里,空間分辨率達到5米;
4)成本費用低。
巷道開挖后,巷道圍巖的變形破壞往往導致巷道破壞或塌方。常規(guī)的監(jiān)測技術,如引伸計、應力計、收斂站等,只能對淺層圍巖進行應力或應變數(shù)據(jù)的檢測,需要大量的人工操作。此外,在上述監(jiān)測技術中,監(jiān)測儀器安裝在開挖面后,因此無法檢測到開挖面前發(fā)生的應變和變形。為了克服這些缺點,開發(fā)了一種基于布里淵光時域反射儀的新型圍巖變形控制監(jiān)測系統(tǒng)。與常規(guī)監(jiān)測系統(tǒng)相比,該系統(tǒng)為寬延巷道圍巖變形控制提供了可靠、準確、實時的監(jiān)測手段。在開挖面前方的鉆孔中安裝光纖傳感器,可以很好地保護傳感器,研究圍巖變形特性。該系統(tǒng)已在張集煤礦tbm掘進巷道中應用。準確地檢測了圍巖變形行為,監(jiān)測結果為圍巖變形控制工作提供了必要的參考依據(jù)。
近20年來,隨著淺層煤炭資源的枯竭,煤礦開采活動不斷向深層轉移。在中國,大約60%的煤礦開采深度在800 m以上。深部開采面臨高地應力和復雜地質條件的挑戰(zhàn)。這些新出現(xiàn)的問題導致了圍巖大變形、大破壞和巷道塌方,嚴重威脅了礦工的安全,限制了煤炭生產(chǎn)的產(chǎn)量。巷道塌方事故占煤礦事故總數(shù)的80%,造成43%的礦工死亡。傳統(tǒng)的淺埋巷道監(jiān)測技術,如引伸計、應力計、收斂站等,由于精度較低、人工操作過多,已不能滿足深部地層的監(jiān)測要求。
為解決深部煤礦圍巖變形監(jiān)測問題,在煤礦井下采煤工作面和巷道掘進中開展了許多新興的測量技術。趙等。利用微震技術對巷道圍巖進行損傷過程監(jiān)測。趙等。提出了一種基于光纖光柵位移傳感器的煤層上覆巖層位移監(jiān)測方法。Kajzar等人應用三維激光技術在井下巷道中進行煤柱變形及頂板監(jiān)測。余等。用激光測距儀研究了圍巖變形和巷道收斂性。Martino和Chandler利用鉆孔攝像機圖像研究了圍巖變形和損傷區(qū)演化行為[9]。Blümling等人提出了微焦點x射線斷層成像對圍巖損傷的長期過程。Lubosik等人提出了一種通過使用嵌入應變計和張量傳感器的儀表化錨桿測量錨桿軸向力和巖體位移的技術。劉等人。建議的瞬變電磁法(tem)用于探測圍巖損傷區(qū)范圍和變形。erich用地震反射法研究了煤礦巷道的塌方特征。
盡管監(jiān)測技術取得了一些進展,但上述監(jiān)測方法在某些方面仍存在缺陷。微震技術和瞬變電磁與地震反射法能夠探測到圍巖的裂隙發(fā)育,但對圍巖位移的監(jiān)測精度不高(達米)。微焦點x射線斷層成像只能測量巖石樣品中的損傷,不能用于現(xiàn)場監(jiān)測。與全分布式光纖傳感系統(tǒng)相比,光纖光柵系統(tǒng)需要的傳感器數(shù)量過多,成本較高。此外,大多數(shù)市售的審訊者只能處理相當少量的FBG,設置感測點的數(shù)量的限制,以及沿光纖的密度。鉆孔攝像機圖像可以檢測圍巖內(nèi)的損傷和斷裂,而實時監(jiān)測不能實現(xiàn),圖像分析依賴于人工操作。由于錨桿長度的限制(通常小于2.5μm),儀器錨桿只能用來測量圍巖淺部的應力和應變。三維激光技術為巷道收斂提供了一種高精度的儀器,而巷道內(nèi)部的變形破壞是無法測量的。
布里淵光時域反射儀(BOTDR)是一種全分布式傳感技術,用于沿所有確定的區(qū)域分布的應變和溫度測量,其中只有一個光纖受到激光脈沖的刺激,因此許多離散傳感器可以被替換。BOTDR提供了快速可靠的測量,它還可以早期檢測可能影響采礦作業(yè)安全的變形,從而提前安排必要的工作,以減輕潛在風險。近年來,botdr系統(tǒng)在煤礦井下得到了廣泛的應用。Naruse等人在智利El Teniente礦進行了BOTDR監(jiān)測。光纖沿巷道對準設置在巷道內(nèi),因此可以測量巷道收斂。Cheng等人采用基于botdr的監(jiān)測方法對煤層上覆巖層變形進行了測量。張和王在巷道表面建立了纖維網(wǎng)結構,并進行了botdr應變測量。
在以前的BOTDR應用中,光纖安裝在巷道開挖面后約5 m處,以避免干擾支撐結構(錨桿、電纜錨桿、鋼網(wǎng)等)的安裝。因此,只能測量隨時間變化的變形,不能立即研究開挖后不久發(fā)生的變形。然而,80%的道路損壞和坍塌事故發(fā)生在開挖面附近。因此,對巷道全斷面、包括較深一層圍巖和掘進工作面的監(jiān)測,一直是保證煤礦井下安全生產(chǎn)的關鍵問題。
本文主要研究基于botdr的煤礦井下巷道圍巖監(jiān)控系統(tǒng)。監(jiān)測系統(tǒng)的結構被修改,從而能夠實時監(jiān)測圍巖的瞬時和隨時間變化的變形。提出了該系統(tǒng)在巷道中的現(xiàn)場監(jiān)測,并對監(jiān)測結果進行了分析,并與常規(guī)監(jiān)測技術的測量結果進行了比較。
2。煤礦井下圍巖控制BOTDR監(jiān)測系統(tǒng)的研制
2.1。BOTDR監(jiān)測系統(tǒng)的基本原理
基于botdr的監(jiān)測系統(tǒng)實現(xiàn)了布里淵散射,這是一個基本的物理過程,代表了光與光介質在傳播介質中的相互作用效應。當光通過光纖時,大部分光沿著原始方向傳播,一小部分光偏離原始方向,導致散射。光纖中的光散射有三種類型:光纖折射率變化引起的瑞利散射、光學聲子引起的拉曼散射和聲學聲子引起的布里淵散射。在布里淵散射中,散射光在其頻譜上達到峰值,其頻率從脈沖光偏移。這種頻移量稱為布里淵頻移。